
Certification Authorities Software Team
(CAST)

Position Paper

CAST-20

ADDRESSING CACHE IN AIRBORNE SYSTEMS
AND EQUIPMENT

COMPLETED JUNE 2003

(Rev 1)

NOTE: This position paper has been coordinated
among the software specialists of certification
authorities from the United States, Europe, and
Canada. However, it does not constitute official
policy or guidance from any of the authorities.
This document is provided for educational and
informational purposes only and should be
discussed with the appropriate certification
authority when considering for actual projects.

Addressing Cache in Airborne Systems and Equipment

1.0 Introduction

Many applicants utilize cache memory in microprocessors to accelerate the speed of
memory access, thus improving processor throughput. However, using cache memory
increases the complexity and accuracy of the worst-case execution time (WCET)
analysis and introduces challenges for coherency, deterministic execution, correct
memory management, and partitioning protection. This paper considers some of the
concerns and current approaches to addressing cache memory usage in airborne
systems and equipment.

2.0 What is Cache Memory and Why is It Used?

Cache memory is a relatively small and fast memory used as temporary storage for data
and instructions by the central processing unit (CPU) of modern microprocessors. A
memory manager is typically used to optimize the contents of the cache memory for
maximum throughput.

Modern processors are increasingly reliant on cache memory. Some processors even
have two levels of cache memory: L1, which is primary cache (small and fast with no
wait states) and L2, which is secondary cache (slower than primary cache since it has
some wait states, but faster than main memory) [2].

3.0 What Are The Certification Concerns with Cache Memory?

There are number of concerns regarding the usage of cache memory. In many airborne
systems containing multiple software functions of different software levels, cache
memory is a common resource used by all the software functions executing on that
microprocessor. Therefore, providing protection mechanisms and partitioning between
those functions can be very challenging and necessitates thorough analyses and complete
robustness testing of the approach and implementation of cache memory management.
Additionally, many cache management approaches rely heavily on commercial-off-the-
shelf (COTS) hardware components, such as memory management units (MMUs) and
watchdog timers, that, if relatively new and untested, may not have a history of reliable
and predictable performance integrity. In many safety-critical real-time systems, certain
“critical” code functions must execute at a specific frequency (or when certain events
occur) reliably, while other software functions in the same application may have less
time-critical need for control of the processor and its resources. Obviously, safety-related
time-critical code must execute reliably and timely, independent of other function’s
(sharing the processor resources) needs. Other concerns revolve around WCET analysis
complexity and accuracy when using cache memory. Some of the specific certification
concerns are described below (not an exhaustive list):

3.1 Establishing An Accurate WCET

DO-248B/ED-94B, FAQ #73 includes the following text [4]:

 Page 2

DO-178B/ED-12B[1] states that the worst-case timing should be determined. Section
6.3.4f of DO-178B/ED-12B states that as part of meeting the verification objective of the
source code being accurate and consistent, the worst-case timing should be determined
by review and analysis for Levels A, B, and C software. The results of this review and
analysis should be documented in the Software Accomplishment Summary as timing
margins (reference Section 11.20d of DO-178B/ED-12B).

The worst-case timing could be calculated by review and analysis of the source code and
architecture, but compiler and processor behavior and its impact also should be
addressed. Timing measurements by themselves cannot be used without an analysis
demonstrating that the worst-case timing would be achieved, but processor behavior
(e.g., cache performance) should be assessed. Using the times observed during test
execution is sufficient, if it can be demonstrated that the test provides worst-case
execution time.

Currently, one of the major concerns with fully cached systems is the inability to
establish a predictable timing evaluation. The concern is not only with data cache but
also with instruction caching (which includes pipelining and branch prediction
algorithms). If the program has no interrupts, the concern might be trivial. However,
when asynchronous interrupts are allowed, the path of execution of the program has no
tracking of the cache state; therefore, the time at any given point in a program to fetch the
next item from memory (data or instruction) is unknown. Figure 1 below shows how
pipelines, caches, registers, and main memory are integrated in a typical modern
processor. Figure 2 illustrates the pipeline structure for the PowerPC 603e. Both of these
illustrations are borrowed from [2].

The predominant concern is the ability to predict the timing behavior of the next fetch or
a given sequence of instructions and associated data execution paths.

3.2 Variations Execution Times

Use of cache memory results in greater variations in the execution times of the software
[3]. Again, this makes accurate predictability a concern.

3.3 Cache Modeling Accuracy

The more complex the processor, the more difficult it is to validate the models used to
predict cache performance. With memory cache enabled, it is more difficult to deduce
the actual WCET of the software, because the analysis would need to include a model of
the cache mechanism [2]. Since the cache management mechanism is typically COTS
hardware, obtaining an accurate model is difficult or impossible. In some cases, it might
be assumed that all memory accesses will result in a cache miss; however, this leads to
wasted resources [2].

3.4 Real-Time Operating System Use of Cache

When real-time operating systems (RTOS) and run-time systems are used, they utilize the
processor’s cache memory.

The FAA recently sponsored research on COTS RTOS. One excerpt from the report
states [5]: Cache memory is indeed more of a hardware issue, however complex
microprocessors that contain and use cache memory do have an affect on the
performance of the RTOS. Under consideration is how should one handle non-
deterministic cache that is shared among partitions. Complex cache algorithms may

require a validation of the caching scheme for determinism and cache overhead should
be accurately accounted.

A particular area of concern is partitioned RTOSs. The FAA report, section 4.1.3.4 states
the following regarding cache memory and partitioning [5]:

An area that deserves particular attention is the use of cache memory in a partitioned
computer platform environment. A cache is typically small-size, high-speed memory, or a
hierarchical set of memory, that resides between the CPU and the main memory. Cache
memory contains a copy of the most frequently accessed memory locations, which can
reduce the overall memory access time. The use of cache can lead to non-deterministic
execution time for functions, depending on how much of the data needed by the function
is available in cache. This behavior may be further aggravated by the fact that cache is
typically a shared resource among partitioned functions, which may lead to cross-
interference among partitioned functions in the time domain, and violate the partitioning
protection. Depending on the state in which the cache memory is left by a function in a
partition, the execution time of the next function scheduled to execute may vary. Even
though the execution time of a function is non-deterministic due to cache, it is still
bounded by the worst case of having all accesses directly to/from main memory. Since
worst-case analysis is crucial in safety-critical, real-time systems, timing analysis, and
scheduling to tasks should address protection of the partitioned functions considering the
presence and use of cache memory. Interference of cache in the spatial domain can be
controlled using memory protection mechanisms such as MMU and SFI. However, the
use of cache introduces an additional concern of maintaining cache coherency such that
the cache swapping is valid at all times. Changing a datum only in cache or main
memory, without reflecting it in its copied version, may result in inconsistent or
erroneous behavior. Techniques for preserving cache coherency should be verified, and
the overhead should be accurately analyzed and addressed in worst-case scenarios.

3.5 Cache Coherency

Maintaining coherency between the data cache and RAM and between the instruction and
data caches is a concern when cache is used. Different architectures tend to use cache in
a variety of ways, making it difficult to address with a single solution. For example,
there are two separate caches on the PowerPC, one for instructions and one for data.
Each cache has its own encoding to control the cache coherency. Figure 3 below shows
potential coherency issues with the PowerPC (PPC).

Instruction Cache Processor
(PPC)

Data Cache
(copyback)

RAM

DMA Devices Other Interfaces
(VMEBus, etc)

(1)

(3)(2)

Figure 3 – Cache Coherency

The loss of cache coherency may occur in three places:

(1) Between data cache and RAM. This results from asynchronous accesses (reads and

writes) to the RAM by the processor and other masters. Adding code into the drivers
to address the other masters can often remedy this problem.

(2) Between instruction cache and data cache. This results in cache getting out of sync
when the loader, debugger, or interrupt connection routines are used. Instructions
may be loaded into data cache but not instruction cache, resulting in a coherency
problem. This is typically addressed by flushing the data cache entries to RAM and
invalidating the instruction cache entries (this will be addressed further in section 4).

(3) Shared cache lines. When cache lines are shared by more than one task, coherency
problems may be introduced. This is often addressed by allocating memory on a
cache line boundary, then rounding up to a multiple of the cache line size.

3.6 Cache Jitter and Partitioning

Section 2.2.6 of [7] introduces the concerns of caching on partitioning by stating:

Cache memory is a hardware architecture mechanism whose primary purpose is to
improve performance of an application running on the target processor. It accomplishes
this by holding information in a local high-speed cache memory, and synchronizing this
information with the contents of main memory as needed. Cache memory should receive
special scrutiny in a partitioned system because the cache mechanism is not aware of the
address partitioning architecture. When an application runs within one partition, it
forces the CPU to load information, which is then preserved for as long as possible

within the cache. Subsequent partitions may be affected by the presence of data in the
cache. As cache memory is common to all partitions, the use of this resource requires
careful analysis. Write-through and/or cache flushing techniques, among others, may be
needed.

Section 4.2 of [7] specifically addresses cache jitter as it relates to partitioning:

Cache memory is a global resource that is shared between partitions. The information in
cache may contain page address values, data values, and code. When a reference to a
particular value is encountered, an automatic search is performed in the cache memory.
If the value is found, it is used directly (cache hit); if the value is not found, it must be
loaded (cache miss). The load is much slower, as it requires an off-chip memory access
cycle. Once loaded, the value may be re-used for as long as it remains in cache memory.
The cache is very fast but expensive (per bit), so it is much smaller than typical off-chip
memories. See section 2.2.6 for details.

Imagine four partitions: P1, P2, P3 and P4. Assume a simple scenario where these
partitions have a duration of 25 msec and a period of 100 msec. According to our rules
for partitioning, it must be impossible for any partition to influence any other or to only
affect other partitions in well-defined and controlled ways. During integration testing it
is determined that all partitions complete their processing in their allotted time slots.
This may have been accomplished because partitions P1, P2, and P3 perform some very
intensive computations that use little data and very little code during the computations.
Code can consist of small, highly computational loops.

Under these conditions, three partitions may use very little of the cache. Partition P4
will have much of the cache available to itself, and it will have very few cache misses in
each iterative period. Under “normal” conditions, P4 will complete its work within its
allotted period.

Imagine the situation where P3 suddenly changes its mode of operation, such that it
references a large amount of data and executes a lot of code just once rather than
referencing a small amount of code iteratively. P3 will cause P4 to have many cache
misses for both code and data. This may result in P4 growing by a factor large enough
to cause it to miss its deadline. Clearly, this violates the principles of partitioning,
because one partition has caused another to fail, which is unacceptable.

The problem may be lessened by selecting different caching modes. In ‘copy-back’ mode,
a data value is held in the cache until space is required for a new value. Before the
cache memory location obtains its new value, the old value is written to the target
memory location. The memory store and memory load are still performed every time a
data value is updated, but several updates in memory may be performed without
extraneous reads and writes. Absence of cache misses reduces the reads and copying
back to memory.

A ‘copy-through’ cache policy forces the value in cache to be copied back to memory
each time a value is updated. As long as a value is in cache, it will be re-used, but as
soon as it is changed, it is written back to memory. This policy reduces the read from
memory, but it does not decrease the writes.

It may appear that the ‘copy-through’ policy is always more efficient and should be used
exclusively, but this may or may not be the case depending on the distribution of the data
accesses.

A ‘data value read’ results in the placement of the value in the referenced memory
location as well as the adjacent locations. Depending on cache-line length, this could be
a 32-byte memory fetch and a corresponding 32-byte write. If a copy-through policy is
used, then only one memory location is written. If memory reference density is high, then
the copy-back policy is more efficient otherwise; the write-through may be more efficient,
depending upon the program.

Data reads are not affected. Because code is not copied back, it is unaffected by the
copy-back mode.

[7] goes on to say: The loss of processing throughput due to cache misses becomes more
important if it affects short time events. A partition may have processes that perform
calculations, and which synchronize with other processes. These synchronization events
may be issued with time outs so that if a process is blocked, its blocking time is limited.
In the presence of delays caused by cache misses the calculation times, and thus
synchronization responses, may be affected. Cache misses can affect the behavior of
processes within a partition, even though the effect can be bounded when analyzed over a
partition’s duration.

Design assurance concerns must include not only the cache-induced jitter on partition
start and duration, but the effect on internal timing events as well.

3.7 Cache Failure

When a system relies on cache, the failure of that cache (e.g., loss or corruption of cache
data due to power interrupt) should be considered in the system safety assessment.

4.0 Approaches to Dealing With Cache

A number of approaches have been or are being proposed regarding the use of memory
cache. Some of those approaches are discussed below:

4.1 No-Cache Approach

One approach is to turn off cache or to use the no-cache as the data point for the WCET.
The no-cache approach usually severely inhibits the processor performance and is not
acceptable for most systems. (Note: When a system relies on cache, the failure of that
cache should be considered in the system safety assessment. The no-cache approach may
help to validate the safety assessment.)

4.2 Use Processor Tools

One approach is to use the various processor tools to manage cache in an intelligent way
that guarantees good performance for the majority of the functions (e.g., all safety-critical
or time-critical functions). The concern here is the tool accuracy, reliability, integrity,
and determinism.

4.3 Statistical Evaluation

Another potential approach (suggested by some but not yet implemented) is to use some
sort of statistical evaluation of the timing analysis and relate it to a safety analysis. Note
that this is very close to a statistical problem that obeys the usual rules of randomness and
some estimation of the probability of being with a given timing budget could be obtained
and possibly entered into the safety analysis. There are several issues dealing with what
inputs would qualify to ensure a truly statistical description of the timing but it may be a
feasible approach.

4.4 Removing Signals

When there is a disparity in the severity of hazards between corrupted outputs and
removal of outputs, another potential approach may be considered. For example, loss of
an ILS signal can be considered to be minor, whereas misleading ILS could be
considered hazardous. In these cases, detection of a timing problem could result in
removal of the signal before it resulted in potentially misleading guidance.

4.5 System Architecture

For some systems it may be possible to architect the system in such a manner that it is
impervious from a safety viewpoint due to timing variations. This clearly depends on the
system and is not a universal solution.

4.6 Inserting Code

It might be feasible to insert “snooping code” into the microprocessor to determine its
behavior and assist in accurate WCET analysis.

4.7 Addressing Cache Coherency

Some of the approaches for dealing with cache coherency were briefly mentioned in
section 3.5 above. Addressing cache coherency in multiple architectures typically
requires designing for the case with the greatest number of coherency issues (i.e., assume
Harvard architecture (separate instruction and data caches), copyback mode, DMA
devices, multiple bus masters, and no hardware coherency support). Typically, hardware
is the most optimal way to maintain cache coherency.

4.8 Addressing Cache Jitter and Partitioning

As described in 3.6 above, cache jitter can affect partitioning assumptions. When
considering design assurance, the applicant should address the following questions [7]:

• Does the behavior of the cache affect time allocated to a partition and performance?

• Can the worst-case partition execution time be tested, by flushing the cache in a
preceding partition window?

• Is there a mechanism provided to control the cache behavior at partition switches?

• Does the system integrator control the cache behavior through the system
configuration tables?

[7] states:

There are several solutions to make the cache behavior more predictable:

• Switch the cache off: While this may seem attractive because it makes each of the
partition execution profiles deterministic, it places a large performance penalty
indiscriminately over all of the partitions.

Most programs assume the availability of cache memory and expect the performance
improvement that they are given.

• Specify a huge jitter margin: When designing the partitioned system, specify that
each partition switch will include a margin that is equivalent to a cache miss on
every value in the cache. This overhead is subtracted from each partition’s duration.
Each process in a partition must be verified independently under these timing
conditions.

The disadvantage to this solution is that each partition is subject to the same fixed
margin. A partition with a very short duration looses a large percentage of its
permissible processing capability, especially if the cache is large.

• Selective flushing: For those system applications that require very deterministic
performance, the cache could be flushed during the partition switch such that the
incoming partition has a clear cache memory at the start of its duration. Flushing
means copying all of the cache values only present in the cache back to main memory
(i.e., they have been updated and copy-back mode is used).

This places the overhead at the start of the partition rather than it being distributed
throughout. The time taken to perform this operation is not fixed, as it depends on
the number of values that must be written to memory.

• Selective Invalidate: For system applications executed in a write-through mode for
which deterministic execution is required, the cache may be invalidated during a
partition switch. A cache invalidate is very fast. A single instruction makes the
cache appear empty. Subsequent data reads are stored in the cache and reused as
normal.

The start of a partition can be precisely predicted. The timer interrupt to start the
partition switch should be very accurate, and the time to switch context (save and restore
all of the registers) will be constant. Additional overhead to select the next partition
should also be small, and its maximum well specified, especially as the partition
scheduling is based on a simple round-robin algorithm.

4.9 Cache Flushing

Cache flushing has been mentioned a few times in this paper. It is a practical approach
that is frequently used in cached systems to preserve cache coherency and to deal with
partitioning concerns. It prevents a partition from depending too much on the history
(i.e., by flushing the cache, the current partition doesn’t depend on previous partition

execution); there is also less “variability” in the execution time (as the cache memory
state “starting point” is always the same at the beginning of the partition execution).

4.10 Other Approaches

[6] proposes that the following four technologies are most-often used for measuring
software execution speed:

• Logic analyzers
• In-circuit emulators
• Hardware-assisted software performance monitors
• Software assisted software performance profiles

According to [6], the technologies typically use one or more of the following
fundamental measurement methods:

• Determining where the system is spending its time (e.g., profiling).
• Monitoring the ability of critical sections of code to meet their deadlines.
• Measuring a system’s response to external events.

All of these measurement techniques have some kind of effect on the system
performance. Therefore, the performance measurement technique must take into account
the effect on the software being developed.

5.0 Certification Authorities Position

The issues presented in section 3 of this paper should be addressed by applicants using
cache, as well as any other “shared” processor resources and project-specific issues.
Applicants should address any use of cache in their software plans. In some cases, a
project-specific issue paper or certification review item may be needed to obtain
agreement between the certification authority and applicant. Section 4 provides some
potential approaches; however, the details of these approaches should be closely
coordinated with the certification authorities. Most applicants use proprietary approaches
that have not been detailed in this paper.

6.0 References

[1] RTCA/DO-178B and EUROCAE/ED-12B, “Software Considerations in Airborne
Systems and Equipment Certification,” 1992.

[2] “Use of Modern Processors in Safety Critical Applications.” By Iain Bate, Philippa

Conmy, Tim Kelly, and John McDermid (of University of York).

[3] Reference used in [2]. “Static Cache Simulations and Its Applications,” by F.

Mueller, Department of Computer Science, Florida State, PhD Thesis, 1994.

[4] RTCA/DO-248B and EUROCAE/ED-94B, Final Report for Clarification of DO-

178B/ED-12B “Software Considerations in Airborne Systems and Equipment
Certification,” 2001.

[5] Study of Commercial-Off-The-Shelf (COTS) Real-Time Operating Systems (RTOS)

in Aviation Applications. Research performed by UTRC under contract to FAA.
Draft report submitted to FAA in May, 2002.

[6] “You Can’t Control What You Can’t Measure, OR Why It’s Close to Impossible to

Guarantee Real-Time Software Performance on a CPU with On-Chip Cache” by Nat
Hillary and Ken Madsen. SE World, 2002.

[7] Commercial Off-The-Shelf (COTS) Real Time Operating Systems (RTOS) and

Architectural Considerations. Draft FAA Report, Submitted May 15, 2003. (Note:
Final report will be posted on http://av-info.faa.gov/software in the future.)

http://av-info.faa.gov/software

	Addressing Cache in Airborne Systems and Equipment
	1.0 Introduction
	2.0 What is Cache Memory and Why is It Used?
	3.0 What Are The Certification Concerns with Cache Memory?
	Figure 3 – Cache Coherency

	4.0 Approaches to Dealing With Cache
	5.0 Certification Authorities Position
	6.0 References

